
Using Constraint Programming and Local Search

Methods to Solve Vehicle Routing Problems

Paul Shaw?

ILOG S.A.

9, rue de Verdun, BP 85
94253 Gentilly Cedex, FRANCE.

shaw@ilog.fr

Abstract. We use a local search method we term Large Neighbourhood

Search (LNS) to solve vehicle routing problems. LNS is analogous to the

shu�ing technique of job-shop scheduling, and so meshes well with con-

straint programming technology. LNS explores a large neighbourhood of

the current solution by selecting a number of \related" customer visits to

remove from the set of planned routes, and re-inserting these visits using

a constraint-based tree search. Unlike similar methods, we use Limited

Discrepancy Search during the tree search to re-insert visits. We analyse
the performance of our method on benchmark problems. We demon-

strate that results produced are competitive with Operations Research

meta-heuristic methods, indicating that constraint-based technology is
directly applicable to vehicle routing problems.

1 Introduction

A vehicle routing problem (VRP) is one of visiting a set of customers using a

eet of vehicles, respecting constraints on the vehicles, customers, drivers, and so
on. The goal is to produce a low cost routing plan specifying for each vehicle, the
order of the customer visits they make. (In academic problems cost is generally
proportional to the number of vehicles, or total travel distance/time.) Industrial
VRPs tend to be large, and so local search techniques are used extensively as
they scale well and can produce reliably good solutions.

Constraint programming appears to be a good technology to apply to VRPs
because of the ubiquity of complex constraints in real problems, such as legisla-
tion on driver breaks, or complex pay provisions. However, search in constraint
programming is usually based upon complete tree-based techniques, which can
at the present moment only solve problems of up to 30 customers reliably.

A natural conjecture is that a combination of local search and constraint
programming should work well for VRPs. Such a method would hopefully provide
the advantages of both: exploration and propagation.

? This work was carried out while the author was working in the Department of Com-

puter Science, University of Strathclyde, as part of the APES research group. The

author wishes to thank all members of APES for their help and support.

M. Maher and J.-F. Puget (Eds.): CP’98, LNCS 1520, pp. 417-431, 1998.
 Springer-Verlag Berlin Heidelberg 1998



We apply a technique we refer to as Large Neighbourhood Search (LNS) to
VRPs. LNS makes moves like local search, but uses a tree-based search with
constraint propagation to evaluate the cost and legality of the move. The moves
made are generally very powerful, changing a large portion of the solution. The
potential for changing large parts of the solution gives LNS its name, as a neigh-
bourhood's size typically varies exponentially with the number of basic elements
of the solution changed by the move.

One way of applying LNS to a VRP is by de�ning a move to be the removal
and re-insertion of a set I of customer visits. We de�ne a \relatedness" measure
between customer visits and use this as a basis for choosing the set I at each
step. We use Limited Discrepancy Search (LDS) to re-insert the customer visits
into the current set of routes. The size of I increases over time, stepping up when
search is deemed to have stagnated at the current size of set I.

Experiments are carried out on benchmark problems, with and without time
windows. We analyse solutions produced by LNS over a range of parameter
settings. LNS is shown to have excellent average performance and produces many
new best solutions to these benchmark problems.

The paper is organised as follows: Section 2 describes LNS as applied to the
VRP, compares it with related work, and assesses its bene�ts. Section 3 presents
computational experiments on benchmark problems. Section 4 concludes.

2 Large Neighbourhood Search

LNS is based upon a process of continual relaxation and re-optimization. For the
VRP, the positions of some customer visits are relaxed (the visits are removed
from the routing plan), and then the routing plan re-optimised over the relaxed
positions (by re-inserting these visits). One iteration of removal and re-insertion
can be considered as the examination of a neighbourhood move. If a re-insertion
is found that results in a cost below that of the best routing plan found so far,
this new solution is kept as the current one.

The re-insertion process uses heuristics and constraint propagation. The min-

imum cost re-insertion can be evaluated via branch and bound, or techniques
that only partially explore the search tree can be used.

Two factors a�ect the way in which LNS operates when applied to the VRP:
how customer visits are chosen for removal, and the re-insertion process. These
are now examined in more detail.

2.1 Choosing Customer Visits

We describe a possible method for choosing the customer visits that are removed
and re-inserted. We would not be surprised if better techniques are found. How-
ever, we believe in a general choice strategy: that of choosing related visits.
Related has to be suitably de�ned. A good measure is one that results in op-
portunities for the re-insertion to improve the routing plan. i.e. the measure
should discount (by labelling as unrelated or loosely related), sets of visits that

418 P. Shaw



are likely to maintain their previous positions when re-inserted. There is no
point in removing visits whose re-insertion is independent of the others', and the
relatedness concept attempts to capture this.

One observation is that visits geographically close to one another are more
related than remote ones. (Alternatively, visits that it is cheap to travel between
should be more related than those with a high travel cost.) It is unlikely that
remote visits will have inter-changes in position due to the high costs involved.

If two visits occur in the same route, we can also consider them to be re-
lated. Removing multiple visits from the same route should be encouraged when
reducing the number of vehicles used is important, as removing all visits from a
route is the only way to reduce the number of routes. (This happens when all
visits are removed from a route, and are then re-inserted into existing routes.)
Related visits might also have similar allowable visiting hours, or be visited at
similar times in the current routing plan.1

Here, for simplicity, we assume a binary relatedness operator R(i; j) taking
two visits and delivering a non-negative value indicating how closely they are
related. Ideally, this function should include domain knowledge about side con-
straints (e.g. see section 2.4 for a discussion of a pickup and delivery example).

We do not address problems with side constraints2 here, and de�ne:

R(i; j) = 1=(cij + Vij)

where cij is the cost of getting to j from i (travel distance in this paper), and
Vij evaluates to 1 if i and j are served by di�erent vehicles and reduction of the
number of vehicles is important in the cost function (see section 3.2 on problems
with time windows). Vij evaluates to 0 otherwise. We assume that all cij are
normalised in the range [0::1].

Figure 1 describes how visits are chosen. If the relatedness measure R(i; j)
perfectly captured which visits should be removed together, then one would
imagine that visits should be drawn from the routing plan using only the relat-
edness concept. In reality, the relatedness measure is never perfect, and relying
on it too heavily can cause search to be too short-sighted (for example, see sec-
tion 3.1). We therefore include a random element. In the algorithm, D controls
determinism.With D = 1, relatedness is ignored and visits are chosen randomly.
With D = 1, visits relaxed are maximally related to some other relaxed visit.
In between, there is a mixture. (Also note that there is always some random
element to the search even at D =1, as a random visit maximally related to a
previously relaxed visit is chosen.)

There are other ways that R(i; j) could be used to choose customer visits. In
�gure 1, a visit is chosen that is related to one visit in the already chosen set.
Alternatively, one could rank the visits by relatedness to all (or some) visits in
the chosen set. Moreover, the ranking system is not ideal when the relatedness
of some pairs of visits is much larger than others (this is addressed in [10]).

1 For the job-shop scheduling problem, [4] uses a shu�ing technique (analogous to

LNS) that relaxes the start times of all operations within a certain range.
2 See [10] for a study of LNS when side constraints are added.

419Using Constraint Programming and Local Search Methods 



RemoveVisits(RoutingPlan plan, integer toRemove, real D)
VisitSet inplan := GetVisits(plan)

Visit v := ChooseRandomVisit(inplan)

inplan := inplan - fvg
RemoveVisit(plan, v)

VisitSet removed := fvg

while jremovedj < toRemove do
v := ChooseRandomVisit(removed)

// Rank visits in plan with respect to relatedness to v

// Visits are ranked in decreasing order of relatedness
VisitList lst := RankUsingRelatedness(v, inplan)

// Choose a random number, rand, in [0; 1)
real rand := Random(0,1)

// Relax the visit that is randD of the way through the rank

v := lst[integer(jlstj�randD)]
removed := removed + fvg

inplan := inplan - fvg

end while

end RemoveVisits

Fig. 1. How visits are removed using relatedness

Control of the Neighbourhood Size For e�ciency, one wants to remove the
smallest set of visits that will improve the cost when the visits are re-inserted.
We use the following scheme to attempt to ensure this: Initially, start the number
of visits r to remove at 1. Then, during search, if a consecutive attempted moves
have not resulted in an improvement in the cost, increase r by one. An upper
limit of 30 was placed on the value of r. This scheme increases r only when the
search has deemed to have become \stuck" for the smaller value of r. The value
of a determines how stubbornly LNS seeks improvements at smaller values of
r. [3] used a similar technique for shu�ing in job-shop scheduling.

2.2 Re-inserting Visits

The re-insertion process uses branch and bound, with constraint propagation
and heuristics for variable and value selection. The upper bound is set to the
cost of the best solution found so far. In its simplest form, the search examines
the whole tree for the re-insertion of all visits at minimum cost.

We view each of the relaxed (removed) visits as the constrained variables,
that can take values corresponding to their available insertion points. (An inser-
tion point is a point between two adjcacent visits in the same route that may
accommodate the visit.) For any particular visit, some insertion points may be
ruled out as illegal via simple propagation rules. For example, a visit v cannot
be inserted between visits i and j if this would cause the vehicle to arrive at v or
j after their latest deadlines. Additionally, propagation rules maintain the load

420 P. Shaw



on the vehicle, and bounds on start of service time for all visits along a route,
based on the pickup quantity, the travel times between visits, and customer time
windows. For a detailed description of such rules, see [15].

Insertion positions for visits can also be ruled out if they would take the lower
bound on the cost of the plan over the upper bound de�ned by the best solution
found so far. We form the lower bound as the current cost of the routing plan.
(We do not compute a lower bound on the cost of including as yet unrouted
visits.) This makes the procedure fast, but the search tree is larger than it would
be if the bound was better. Improving the bound is a subject of future work.

Branching Heuristics We follow the general rules of of \most constrained
variable", \least constrained value" to choose a visit to insert and its insertion
point. A visit could be considered constrained if it is far from the rest of the
routing plan (and so will bring the cost of the plan more quickly towards the
upper bound when inserted). When choosing a position, we could consider an
insertion point less constraining if it increases the cost of the routing plan less.

Assume that visit v has a set of insertion points Iv = fp1; : : : ; png, and
that the cost Cp of an insertion point p is the increase in cost of the routing
plan resulting from inserting v at p. We then de�ne the cheapest insertion point
cv 2 Iv of v as the one for which Ccv is a minimum.As a heuristic, we choose visit
v to insert for which the cost Ccv of its cheapest insertion is largest. This choice of
visit is known as the farthest insertion heuristic. We then try to insert this visit
at each of its insertion points, cheapest to most expensive, in increasing order.
The sub-problem of inserting the remaining visits is solved after each insertion of
v. If any visit has only one legal insertion point, it is immediately inserted at this
point. This is performed as a propagation rule: a so-called \unit propagation".

The farthest insertion heuristic works well, but like any heuristic, has its
problems. The main one is it only addresses one constraint: the bound on the
cost function. When other constraints are added, its guidance is poorer. Ideally,
one wants the heuristic to take account of all (or the more important) constraints.

Limited Discrepancy Search In many cases, the branch and bound re-
insertion procedure can �nd a better solution or prove that none exists for about
25 removed visits in a few seconds for problems with time windows. For prob-
lems without time windows, the optimal re-insertion for only around 15 visits
can be computed in this time as the reduced number of constraints results in less
pruning of the search space. Unfortunately, the distribution of solution times has
a heavy tail, and some re-insertions take a long time to compute. To alleviate
this problem, we used Limited Discrepancy Search [9] (LDS). LDS explores the
search tree in order of an increasing number of discrepancies, a discrepancy be-
ing a branch against the value ordering heuristic. We count a single discrepancy
as the insertion of a customer visit at its second cheapest position. We count
as two discrepancies either one insertion at the third cheapest position, or two
insertions at their second cheapest positions, and so on. We use only one phase

of LDS, with the discrepancy limit set to a pre-de�ned value d. In this way, we

421Using Constraint Programming and Local Search Methods 



explore all leaf nodes from 0 to d discrepancies, without re-visiting leaf nodes.
Our re-insertion algorithm is shown in �gure 2. The management of legal in-
sert positions is not mentioned|we assume they are handled by automatically
triggered propagation rules, as previously discussed. The parameter d trades the
coverage of the the search tree with the speed of re-insertion. When d is small, we
opt for large numbers of attempted re-insertions with little search tree coverage
for each one. For high values of d, the opposite situation holds. The presence of
a \trade o�" is investigated in section 3.

Reinsert(RoutingPlan plan, VisitSet visits, integer discrep)

if jvisitsj = 0 then

if Cost(plan) < Cost(bestplan) then
bestplan := plan

end if

else

Visit v := ChooseFarthestVisit(visits)

integer i := 0

for p in rankedPositions(v) and i � discrep do

Store(plan) // Preserve plan on stack
InsertVisit(plan, v, p)

Reinsert(plan, visits - v, discrep - i)
Restore(plan) // Restore plan from stack
i := i + 1

end for

end if

end Reinsert

Fig. 2. How visits are re-inserted

2.3 Related Work

LNS is analogous to the shu�ing technique used in job-shop scheduling [1, 4].
To perform a shu�e, start times for operations on the majority of machines
are relaxed, and a tree-based search procedure reconstructs the schedule. We
have not used the term \shu�ing" in this paper to avoid confusion with job-
shop scheduling. Moreover, the basic idea is easily generalizable to other problem
classes, where the natural visualization of the move is not a shu�ing of positions.

In [1], a simple shu�e is presented, but in [4], various types of shu�e are
used. The shu�es di�er by the criteria for selecting the operations that will be
relaxed. These selections use common machines, common start times, and so
on. Interestingly, each of the shu�es can be seen as exploiting the relatedness
of operations. The authors also use an incomplete search technique to recon-
struct the schedule by limiting the number of backtracks available. We tried

422 P. Shaw



such an approach, but it proved inferior to LDS, with virtually no advantages
in implementation simplicity or e�ciency.

Other work on routing problems [14,16] also advocates the use of constraint
programming within local search. Here, move operators from the routing liter-
ature are used (for instance generalised insertion), but a constraint program-
ming branch and bound search evaluates the neighbourhood to �nd the best
legal move. One can see the similarities with LNS, but there are di�erences.
The main one is that only traditional move operators are being used, and so
constraint programming only improves the e�ciency of the evaluation of the
neighbourhood, and not the power of the move operators themselves. Secondly,
the whole neighbourhood is being explored, requiring a complete branch and
bound search. With LNS, any method can be used to perform the re-insertion of
visits, for instance, a heuristic method, local or complete search, LDS, or another
discrepancy-based approach (e.g. [13]).

Some work has been performed in solving quadratic assignment problems
using a similar technique to LNS [12].

Constraint programming and local search were applied to routing problems
in [2], using a technique of �ltering out certain moves which violate core con-
straints, allowing the constraint engine to check the remainder. The operation
of the method is therefore unlike LNS.

2.4 Discussion

There are advantages to using LNS over traditional local search. The main ad-
vantage is that side constraints can be better handled. For instance, in the VRP,
di�erent models such as the pickup and delivery problem (PDP) can be easily
dealt with. Using traditional local search, this is more di�cult: special-purpose
operators need to move both the pickup and delivery to a di�erent route simul-
taneously. With LNS, the pickup and delivery are simply made strongly related.
The normal PDP constraints of same vehicle and time(pickup) < time (delivery)

then constrain where the visits can be re-inserted. Making these visits highly
related is important here. If only one visit of the pair was removed, it would be
highly restricted in where it could be re-inserted.3

Kindervater and Savelsbergh [11] discuss ways of e�ciently introducing side
constraints into local search. Their methods, however, are complex and dedicated
to particular move operators and side constraints. Moreover, they do not suggest
how to extend their methods to di�erent move operators or side constraints.

A di�culty with problems with many side constraints is that many of the
simple local search move operations normally used (such as moving a single visit
to a new position) will be illegal due to violation of these constraints. Increasing

3 The above discussion brings about a di�culty with LNS. When many di�erent types

of side constraints are operating, how strongly should any constraint relate visits in

comparison to the others? This question, one of tuning, seems to plague all su�ciently

complex heuristic algorithms. Automatically determining relative relatedness values

is a subject of future work.

423Using Constraint Programming and Local Search Methods 



numbers of side constraints constantly reduce the number of feasible moves.
This can make local search di�cult, as the search space becomes more restricted
or even disconnected. LNS alleviates this problem somewhat by providing far-
reaching move operators that allow the search to move over barriers in the search
space created by side constraints.

In local search, evaluation of cost di�erences is time consuming. In idealised
models, one often uses travel distance as the cost function, since for most simple
moves, cost di�erences can be computed in constant time. (Savelsbergh [19] has
also introduced ways of computing route time di�erences for such operators in
constant time.) However, for real VRPs, cost functions are seldom this simple.
With LNS, the full cost of a move is evaluated during constraint propagation.
Cost di�erences are not used, and there is no need to invent clever methods to
compute them. We did mention, however, that our heuristics for choosing the
next visit to insert and its favoured position operate on cost di�erences. Since
this information is just a hint to the search, and most cost functions are generally
related to distance, we can simply use distance as an approximation.

3 Computational Results

We report the results of applying LNS to benchmark problems with and without
time windows. All problems have an unlimited number of identical limited ca-
pacity vehicles located at a single depot. Time and distance between customers
is Euclidean. Each customer has a speci�ed load, and for problems with time
windows, a service time and a time window during which it must be visited. For
all problems, we chose an initial solution with the number of vehicles equal to the
number of customers, with one customer visit performed by each vehicle. The
initial neighbourhood size is set so that only one visit is removed and re-inserted.
We examine the quality of solutions obtained by LNS over various parameter
settings. We also report new best solutions obtained. Finally, we perform CPU-
intensive runs of LNS to compare results with the best Operations Research
methods. We used a 143 MHz Ultra Sparc running Solaris for all experiments.
All code was written in C++ and compiled using the Sun C++ compiler.

3.1 Capacitated VRPs

Following [18], we use three types of capacitated VRP: classic test problems,
non-uniform problems, and those derived from real data. The classic problems
(C50, C75, C100, C100B, C120, C150, C199) are due to [6]. The non-uniform
problems (TAI100A{TAI100D,TAI150A{TAI150D) were created by Rochat and
Taillard [18] to capture structure inherent in real problems: loads are exponen-
tially distributed, and customers are realistically clustered. Finally, problems
re
ecting real data are taken from [8] (F71 and F134) and [22] (TAI385). In all
these problems, the number in the name indicates the number of customers. The
objective is to minimise the total distance travelled.

424 P. Shaw



LNS as presented has 3 parameters. First, we can vary the number of discrep-
ancies d used by LDS. Second, we can vary the number of unsuccessful moves a
that must be made to increase the number of visits to re-insert. Finally, we can
change the determinism parameter D. We chose d 2 f0; 1; 2; 3;5; 10;1g (d =1

performs complete search), a 2 f250; 500; 1000g, and D 2 f1; 5; 10; 15;30;1g
(D = 1 ignores relatedness, while D =1 uses maximal relatedness).

For each combination of parameter settings, we ran LNS three times (with
di�erent random seeds) on all problems, with a time limit of 900 seconds. When
d =1 some re-insertions can take a long time, and so a time limit of 20 seconds
was placed on the re-insertion process, which is in force for all experiments. (The
number of timeouts that occurred for d � 10 was negligable.)

Table 1 shows the results of running LNS over all capacitated problems:
three times for each parameter combination. We show the percentage di�erence
in cost between solutions obtained by LNS and the best published solution. We
computed these percentages as follows: for each combination of parameters, we
take the costs of all the solutions provided by LNS and divide them by the cost
of the best published solution for the corresponding problem. This delivers a
set of cost ratios. We then form a ratio which is the geometric mean of this
set: the global cost ratio. By subtracting one and multiplying by 100, we attain
the average percentage �gure above the best published solutions. We used this
method to produce all averages of percentages.

The average costs produced by LNS are close to the best published ones.
All average results are within 7% of the best published solution, and for the
best parameter settings, 2.2% from the best published solution on average. The
number of attempts a has the smallest impact on the quality, but results for
a = 1000 are slightly worse. From examination of, for instance, the results for
a = 250, it is clear that the worst results are produced at the extremities of
the ranges of discrepancies and determinism. Determinism set at 5 or 10 and
a discrepancy limit around 2 appear to give the best results. Relatedness is
useful, as at unit determinism (visits chosen for re-insertion at random), results
are poorer. However, over reliance on relatedness also produces a degradation
of results (seen at in�nite determinism). LDS is also playing a role: at 0 and
in�nite discrepancies, results are worse than for values such as 2 or 3.

Best Published Solutions Table 2 compares the lowest costs obtained by LNS
with the best published ones. A +, -, or = indicates whether LNS bettered, could
not match, or matched these solutions. LNS has tied the best in 8 cases, bettered
it in 3, and not attained it in 7 of the cases. We attribute the largest deviation of
around 1.5% in problem TAI385 to the large problem size. We believe a longer
running time is required than we allowed in our experiments.

3.2 VRPs with Time Windows

We performed experiments on some of Solomon's instances [20], the classic
benchmark VRPs with time windows. Each problem has 100 customers, time

425Using Constraint Programming and Local Search Methods 



discrepancies

attempts determinism 0 1 2 3 5 10 1

1 4.3 3.8 4.8 4.2 5.0 5.6 6.0

5 3.0 2.5 2.3 2.2 3.3 3.7 2.6

250 10 2.8 2.3 2.2 2.3 2.5 3.5 3.2
15 2.8 2.4 2.2 2.7 2.6 3.4 3.8

30 3.3 2.8 2.7 2.6 3.4 3.2 4.2

1 5.5 3.6 4.1 4.3 5.1 5.3 4.5

1 5.1 4.4 3.8 4.6 5.0 5.3 5.3

5 3.0 2.4 2.9 2.7 2.4 2.9 3.8
500 10 2.8 2.1 2.3 2.6 2.9 3.9 3.7

15 2.9 2.5 2.5 2.3 2.6 3.3 3.6

30 2.6 2.7 3.0 2.6 3.2 3.9 4.2
1 4.9 5.0 4.6 3.9 4.2 5.8 4.6

1 4.8 5.3 5.2 4.6 5.3 6.0 5.4
5 2.9 2.9 2.9 3.0 2.7 3.4 3.6

1000 10 3.1 3.1 2.9 3.1 3.1 3.2 3.9

15 3.1 2.8 2.7 2.9 2.6 3.0 3.6

30 3.5 3.0 2.6 3.7 3.2 3.4 4.1

1 6.1 4.4 5.0 4.6 5.7 6.0 5.2

Table 1. Performance of LNS on simple capacitated problems over various parameter
settings. Each problem without time windows was solved three times. Mean percentages

above the best published solutions are shown.

windows and capacity constraints. A scheduling horizon is de�ned by placing a
time deadline on the return time to the depot. The problems are divided into
two main classes: \series 1" and \series 2" with di�erent scheduling horizons.
The series 1 problems have a shorter scheduling horizon than those of series 2.
On average, around 3 vehicles are required to serve the 100 customers in the
series 2 problems, whereas around 12 are needed for series 1. Experiments were
performed only on the series 1 problems, of which there are 29. For the series 2
problems, the re-insertion procedure was not able to optimise the insertion of
the large number of visits required to reduce the number of routes to 4 or under.
As future work, we plan to tackle this problem by providing some guidance in
the cost function to encourage at least one short route. In this way, less visits
will need to be re-optimised to reduce the number of routes.

The series 1 problems are split into subclasses: R1, with customers distributed
randomly, C1, with customers in well-de�ned clusters, and RC1, with a mixture.
The objective function for VRPs with time windows is normally a hierarchical
one: minimise the number of vehicles, and within this, minimise total travel
distance. We associate a high cost with the use of each vehicle, and then LNS
automatically reduces vehicles when it can. We performed the same analysis as
for problems without time windows.

The average percentages above the best published values are shown in table 3.
Since we now take vehicles into account, we show the average percentages of

426 P. Shaw



Problem Best LNS

C50 524.61 524.61 =

C75 835.26 835.26 =
C100 826.14 826.14 =

C100B 819.56 819.56 =

C120 1042.11 1042.97 -
C150 1028.42 1032.61 -

C199 1291.45 1310.28 -

TAI100A 2047.90 2047.90 =
TAI100B 1940.61 1939.90 +

Problem Best LNS

TAI100C 1407.44 1406.86 +

TAI100D 1581.25 1586.08 -

TAI150A 3055.23 3055.23 =

TAI150B 2727.99 2732.27 -
TAI150C 2362.79 2361.62 +

TAI150D 2655.67 2661.72 -

F71 241.97 241.97 =
F134 1162.96 1162.96 =

Table 2. Comparison of best solutions obtained by LNS against best published solu-

tions for simple capacitated problems.

vehicles (left) and distance (right) above the best published solution. Only results
for classes R1 and RC1 are included in the table. Results for class C1 were not
included as these problems are easy. Nearly all runs produced the best known
solution to their corresponding problem and so including class C1 in the table
would have skewed the results. Further evidence of the easiness of some of the C1
benchmarks is that problems C101 and C102 can be solved to optimality by our
branch and bound insertion procedure in a few seconds. The optimal solution to
both problems is 10 vehicles, distance 828.94, correcting previous results in [7]
that claim the optimal has distance 827.3 using 10 vehicles. [7] uses distances
truncated at the �rst decimal place, leading to the error. We use real-valued
distance and time values.

Results again indicate that LNS performs well, attaining average solutions
(in terms of numbers of vehicles) as good as just over 3% from the best published
solution. However, some quite bad solutions (up to around 12% from the best
published solution) are produced when relatedness is ignored (D = 1).

One can see that good solutions are created when the number of discrepancies
is higher than for the problems without time windows. There are reasons for this.
First, when more constraints are present, more pruning occurs, making more
intensive search cheaper than for problems with no time windows (this e�ect
can also been observed in [5, 15]). Second, our farthest insertion heuristic makes
more mistakes for these problems for two reasons: time windows are not taken
into account, and the heuristic provides poor guidance in reducing the number
of routes. Thus, more discrepancies are necessary to repair heuristic errors.

The attempts a plays an important role|results are poorer for increasing
a. This is because the neighbourhood size is still low by the end of the search.
For instance, with a = 1000, little search is done with medium to large numbers
(> 15) of visits are being re-inserted. The worsening of results as a increases is
probably due to the fact that to reduce the number of routes by one, often two
or even three routes have to be removed from the routing plan. For the series 1
problems, this means that around 20 visits or more must be removed.

427Using Constraint Programming and Local Search Methods 



discrepancies

att. det. 0 1 2 3 5 10 1

1 9.4 2.1 8.5 1.3 9.5 1.4 10.5 1.5 9.5 1.5 12.7 1.4 10.6 1.6

5 5.4 1.9 4.4 1.0 3.7 0.7 4.2 0.6 3.8 0.9 3.3 0.4 3.7 0.4

250 10 5.6 2.0 4.2 1.5 3.8 1.0 3.8 0.8 3.2 0.6 4.1 0.4 3.4 0.4
15 5.0 2.8 3.5 1.6 4.1 0.9 3.6 0.7 3.3 0.6 3.6 0.3 3.3 0.6

30 6.6 4.2 3.1 2.2 3.6 0.8 3.3 0.8 3.8 0.1 5.0 -0.0 4.3 0.5

1 6.0 4.2 6.0 1.4 4.5 1.6 4.2 0.4 3.7 0.5 3.6 0.6 4.2 0.2

1 9.9 1.8 9.0 1.0 10.5 1.4 10.2 1.1 9.2 1.2 8.1 1.7 10.8 1.1

5 5.6 1.4 4.4 0.8 4.3 0.7 4.2 0.5 4.1 0.6 3.6 0.2 3.9 0.4
500 10 5.2 2.1 3.8 1.3 3.5 0.7 3.7 0.6 4.4 -0.1 4.4 0.1 4.2 0.4

15 5.0 2.2 4.7 0.7 3.7 0.5 3.7 0.7 3.4 0.4 3.4 0.1 4.0 0.1

30 5.1 3.0 3.8 1.4 4.7 0.7 3.2 0.7 3.9 0.4 3.4 0.7 4.6 0.0
1 6.1 4.2 5.1 1.4 3.9 0.8 4.1 0.5 3.8 0.6 3.7 0.8 3.6 0.7

1 9.9 2.3 11.6 2.1 9.3 1.9 10.4 1.9 13.8 2.1 11.0 1.9 10.0 1.8
5 6.1 1.3 5.0 0.8 5.1 0.3 5.3 0.4 5.0 0.5 4.2 0.1 5.0 0.4

1000 10 6.1 1.3 4.8 0.6 5.1 0.4 4.3 0.8 5.4 0.2 3.4 0.4 4.1 0.6

15 5.8 2.1 4.7 0.8 5.1 0.3 4.2 0.6 5.7 0.1 3.5 1.1 4.4 0.3

30 6.2 2.4 5.7 0.7 3.9 0.3 4.9 0.4 5.0 0.3 3.9 0.1 5.7 0.1

1 7.2 2.7 5.4 2.2 4.1 1.7 4.3 0.8 5.4 0.1 5.2 0.3 5.2 0.3

Table 3. Performance of LNS on VRPs with time windows over various parameter
settings. Each problem was solved three times. Mean percentages of vehicles (left) and

distance (right) above the best published solutions are shown.

Finally, unlike the problems without time windows, relying heavily on relat-
edness does not appear to be as detrimental to the quality of results. Without
time windows, cost rose noticeably when D was too high, but only a mild in-
crease (if any) can be seen for the problems with time windows. It would thus
appear that the relatedness function for problems with time windows (which
concentrates on relating visits in the same route) is a good guide.

Best Published Solutions Table 4 compares the best solutions obtained by
LNS with the best published ones taken from [7, 17, 18, 21, 23]. We show in the
table the best published solution, and the best solution obtained by either Rochat
and Taillard [18] (hereafter referred to as RT) or Taillard et al. [21] (hereafter
referred to as TAI) if the best published solution was not generated by RT or
TAI. We do this as RT and TAI (unlike the others) use real, double precision
distances. As stated in [21], a consequence of using limited precision distances
is that solutions found using these methods may not be feasible when higher
precision distances are used to check their validity. A +, -, or = indicates whether
LNS bettered, could not match, or matched the best solution from RT or TAI.

LNS has tied RT or TAI in 16 of the 29 cases, bettered them in 10, and not
matched them in 3 of the cases. In two of these three cases, LNS could not match
the number of vehicles used by TAI. All new best solutions produced by LNS
are available at http://www.math.sintef.no/GreenTrip.

428 P. Shaw



Prob. Best Pub. RT & TAI LNS

C101 10 827.3 10 828.94 10 828.94 =

C102 10 827.3 10 828.94 10 828.94 =
C103 10 828.06 10 828.06 =

C104 10 824.78 10 824.78 =

C105 10 828.94 10 828.94 =
C106 10 827.3 10 828.94 10 828.94 =

C107 10 827.3 10 828.94 10 828.94 =

C108 10 827.3 10 828.94 10 828.94 =
C109 10 828.94 10 828.94 =

R101 18 1607.7 19 1650.80 19 1650.80 =

R102 17 1434.0 17 1486.12 17 1486.12 =
R103 13 1207 13 1294.24 13 1292.68 +

R104 10 982.01 9 1007.31 +

R105 14 1377.11 14 1377.11 =
R106 12 1252.03 12 1252.03 =

Prob. Best Pub. RT & TAI LNS

R107 10 1126.69 10 1104.66 +

R108 9 968.59 9 963.99 +

R109 11 1214.54 11 1197.42 +

R110 11 1080.36 10 1135.07 +
R111 10 1104.83 10 1096.73 +

R112 10 953.63 10 953.63 =

RC101 14 1669 14 1696.94 14 1696.95 -
RC102 12 1554.75 12 1554.75 =

RC103 11 1110 11 1262.02 11 1261.67 +

RC104 10 1135.83 10 1135.48 +
RC105 13 1643.38 14 1540.18 -

RC106 11 1448.26 12 1376.26 -

RC107 11 1230.54 11 1230.48 +
RC108 10 1139.82 10 1139.82 =

Table 4. Comparison of best solutions obtained against best published solutions for

Solomon's problems

Comparison of Improvement Over Time In both RT and TAI, tables of
the mean number of vehicles and distances as the search progresses are given. We
use this opportunity to compare LNS with these approaches. However, these ap-
proaches use more CPU time than the experiments reported so far. We therefore
performed longer runs of LNS using parameter settings of a = 250 and D = 15
(which we considered reasonable from examination of table 3). We solved all
problems in R1 and RC1 6 times with di�erent random seeds, using a time limit
of 1 hour. For half of these runs we set d = 5, and for the other half, d = 10.

Table 5 shows, for each method, the CPU time used at three points during
the algorithm, and the mean solution quality for each class at that point. This
quality is expressed as the mean number of vehicles used per problem over the
class, and the mean distance travelled per problem over the class. We use a faster
machine than either RT or TAI, and to give a better comparison of resources
used, have divided their times by the ratio of our clock rate to theirs.

We can see that the results for d = 5 are better than those for d = 10, and
so a smaller discrepancy is better here. LNS performs well in comparison with
the best Operations Research meta-heuristic techniques: the number of vehicles
and distance is reduced to approximately the same level as TAI using a roughly
equivalent amount of CPU time.

4 Conclusion

Large Neighbourhood Search, a method analogous to the shu�e of job-shop
scheduling, has been applied to VRPs. LNS operates by making powerful re-
insertion based moves, which are evaluated using constraint programming.

429Using Constraint Programming and Local Search Methods 



RT TAI LNS

Class CPU Quality CPU Quality CPU Quality (d = 5) Quality (d = 10)

315 12.83 1208.43 803 12.64 1233.88 900 12.45 1198.37 12.48 1196.07

R1 909 12.58 1202.31 2408 12.39 1230.48 1800 12.35 1201.47 12.45 1195.30

1888 12.58 1197.42 4816 12.33 1220.35 3600 12.33 1201.79 12.42 1195.71

301 12.75 1381.33 656 12.08 1404.59 900 12.05 1363.67 12.05 1360.89

RC1 909 12.50 1368.03 1969 12.00 1387.01 1800 12.00 1363.68 12.03 1358.40
1818 12.38 1369.48 3938 11.90 1381.31 3600 11.95 1364.17 12.00 1358.26

Table 5. Comparison of solution quality over time for Solomon's problems

Selecting visits for re-insertion based upon a \relatedness" concept leads to
signi�cantly better results than random selection. LDS was used to re-insert
visits, giving better results than complete search or limiting the the number of
backtracks in depth-�rst search.

On benchmark problems, LNS is highly competitive with leading Operations
Research methods, while being much simpler. Furthermore, we believe LNS holds
more promise for real problems than traditional local search methods due to its
ability to better address side constraints.

Acknowledgment

I wish to thank members of the APES group for their thought provoking con-
versations, and Ian Gent in particular for encouraging me to write this paper.

The production of this paper was supported by the GreenTrip project, a
research and development undertaking partially funded by the ESPRIT Pro-
gramme of the Commission of the European Union as project number 20603.
The partners in this project are Pirelli (I), ILOG (F), SINTEF (N), Tollpost-
Globe (N), and University of Strathclyde (UK).

References

1. D. Applegate and W. Cook. A computational study of the job-shop scheduling
problem. ORSA Journal On Computing, 3:149{156, 1991.

2. B. De Backer, V. Furnon, P. Prosser, P. Kilby, and P. Shaw. Local search in con-
straint programming: Application to the vehicle routing problem. In A. Davenport

and C. Beck, editors, Proceedings of the CP-97 workshop on Industrial Constraint-

based Scheduling, 1997.

3. P. Baptiste, C. Le Pape, and W. Nuijten. Constraint-based optimization and ap-

proximation for job-shop scheduling. In Proceedings of the AAAI-SIGMANWork-

shop on Intelligent Manufacturing Systems, IJCAI-95, Montreal, Canada, 1995.

4. Y. Caseau and F. Laburthe. Disjunctive scheduling with task intervals. Technical

report, LIENS Technical Report 95-25, �Ecole Normale Sup�erieure Paris, France,

July 1995.

430 P. Shaw



5. Y. Caseau and F. Laburthe. Solving small TSPs with constraints. In L. Naish,

editor, Proceedings the 14th International Conference on Logic Programming. The
MIT Press, 1997.

6. N. Christo�des, A. Mingozzi, and P. Toth. The vehicle routing problem. Combi-

natorial Optimization, pages 315{338, 1979.
7. M. Desrochers, J. Desrosiers, and M. Solomon. A new optimization algorithm for

the vehicle routing problems with time windows. Operations Research, 40(2):342{

354, 1992.
8. M. Fisher. Optimal solution of vehicle routing problems using minimum K-trees.

Operations Research, 42:626{642, 1994.

9. W. D. Harvey and M. L. Ginsberg. Limited discrepancy search. In Proceedings of

the 14th IJCAI, 1995.

10. P. Kilby, P. Prosser, and P. Shaw. A comparison of traditional and constraint-based
heuristic methods on vehicle routing problems with side constraints. Submitted to

the Constraints Special Issue on Industrial Scheduling, 1998.
11. G. A. P. Kindervater and M. W. P. Savelsbergh. Vehicle routing: Handling edge

exchanges. In E. H. L. Aarts and J. K. Lenstra, editors, Local Search in Combina-

torial Optimization, pages 337{360. Wiley, Chichester, 1997.
12. T. Mautor and P. Michelon. MIMAUSA: A new hybrid method combining exact

solution and local search. In Proceedings of the 2nd International Conference on

Meta-heuristics, 1997.

13. Pedro Meseguer and Toby Walsh. Interleaved and discrepancy based search. In

Proceedings of the 13th European Conference on AI|ECAI-98, 1998. To appear.

14. G. Pesant and M. Gendreau. A view of local search in constraint programming.

In Proceedings of CP '96, pages 353{366. Springer-Verlag, 1996.

15. G. Pesant, M. Gendreau, J.-Y. Potvin, and J.-M. Rousseau. An exact constraint

logic programming algorithm for the traveling salesman problem with time win-

dows. Transportation Science, 1998. To appear.

16. G. Pesant, M. Gendreau, and J.-M. Rousseau. GENIUS-CP: A generic single-

vehicle routing algorithm. In Proceedings of CP '97, pages 420{433. Springer-

Verlag, 1997.

17. J.-Y. Potvin and S. Bengio. A genetic approach to the vehicle routing problem with

time windows. Technical Report CRT-953, Centre de Recherche sur les Transports,

University of Montreal, 1994.

18. Y. Rochat and E. D. Taillard. Probabilistic diversi�cation and intensi�cation in

local search for vehicle routing. Journal of Heuristics, 1(1):147{167, 1995.

19. M. W. P. Savelsbergh. The vehicle routing problem with time windows: Minimizing

route duration. ORSA Journal on Computing, 4(2):146{154, 1992.

20. M. M. Solomon. Algorithms for the vehicle routing and scheduling problem with
time window constraints. Operations Research, 35:254{265, 1987.

21. E. Taillard, P. Badeau, M. Gendreau, F. Guertain, and J.-Y. Potvin. A tabu search

heuristic for the vehicle routing problem with soft time windows. Transportation
Science, 32(2), 1997.

22. E. D. Taillard. Parallel iterative search methods for vehicle routing problems.
Networks, 23:661{676, 1993.

23. S. R. Thangiah, I. H. Osman, and T. Sun. Hybrid genetic algorithm, simulated an-

nealing, and tabu search methods for vehicle routing problems with time windows.
Working paper UKC/OR94/4, Institute of Mathematics and Statistics, University

of Kent, Canterbury, 1994.

431Using Constraint Programming and Local Search Methods 


